Is seeding a good strategy in multi-objective feature selection when feature models evolve?
نویسندگان
چکیده
منابع مشابه
Evolutionary Multi-Objective Feature Selection
Feature selection is one of the most pervasive problems in pattern recognition. It can be posed as a multiobjective optimisation problem, since, in the simplest case, it involves feature subset cardinality minimisation and performance maximisation. In many problem domains, such as in medical or engineering diagnosis, performance can more appropriately be assessed by ROC analysis, in terms of cl...
متن کاملMulti-objective Feature Selection in Classification: A Differential Evolution Approach
Feature selection is an important pre-processing step in classification tasks. Feature selection aims to minimise both the classification error rate and the number of features, which are usually two conflicting objectives. This paper develops a differential evolution (DE) based multi-objective feature selection approach. The multi-objective approach is compared with two conventional methods and...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملFeature Selection for Bankruptcy Prediction: A Multi-Objective Optimization Approach
In this work a Multi-Objective Evolutionary Algorithm (MOEA) was applied for feature selection in the problem of bankruptcy prediction. This algorithm maximizes the accuracy of the classifier while keeping the number of features low. A two-objective problem, that is minimization of the number of features and accuracy maximization, was fully analyzed using the Logistic Regression (LR) and Suppor...
متن کاملFeature Selection for Bankruptcy Prediction: A Multi-Objective Optimization Approach
In this work a Multi-Objective Evolutionary Algorithm (MOEA) was applied for feature selection in the problem of bankruptcy prediction. This algorithm maximizes the accuracy of the classifier while keeping the number of features low. A two-objective problem, that is minimization of the number of features and accuracy maximization, was fully analyzed using the Logistic Regression (LR) and Suppor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Software Technology
سال: 2018
ISSN: 0950-5849
DOI: 10.1016/j.infsof.2017.08.010